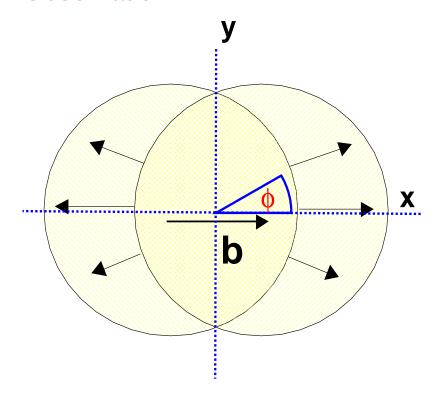
Viscosity in Heavy Ion Collisions

Derek Teaney

SUNY at Stonybrook and RIKEN Research Fellow

Viscous hydro: Kevin Dusling, DT, Phys. Rev. C2008

Observation:



There is a large momentum anisotropy:

$$v_2 \equiv \frac{\left\langle p_x^2 - p_y^2 \right\rangle}{\left\langle p_x^2 + p_y^2 \right\rangle} \approx 20\%$$

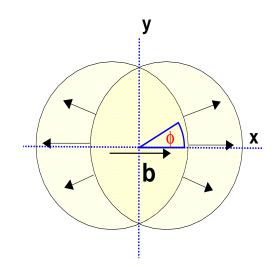
Interpretation

ullet The medium responds as a fluid to differences in X and Y pressure gradients

Data on Elliptic Flow:

$$\frac{1}{p_T} \frac{dN}{dp_T d\phi} = \frac{1}{p_T} \frac{dN}{dp_T} (1 + 2 v_2(p_T) \cos(2\phi) + \dots)$$





$$X:Y = (1 + \underbrace{2v_2}_{\sim 0.4} : 1 - \underbrace{2v_2}_{\sim 0.4})$$

Elliptic flow is large X:Y $\sim 2.0:1$

Need Hydrodynamics

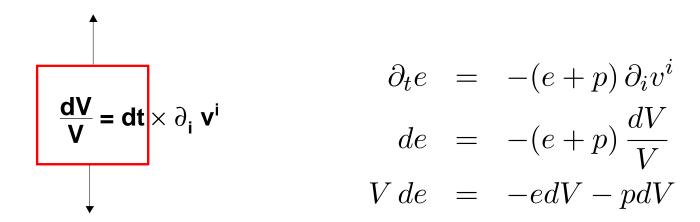
$$\partial_{\mu}T^{\mu\nu} = \partial_{\mu}(e\,u^{\mu}u^{\nu} + p\,\Delta^{\mu\nu}) = 0$$

- Equation of State (EoS): p(e, n)
- Don't really know what the constituents are?
- Transport theory viable?

To interpret these EOM let us write them in the LRF:

$$\partial_t T^{00} \to \partial_t e = -(e+p) \,\partial_i v^i$$

Work



• The EOM reads

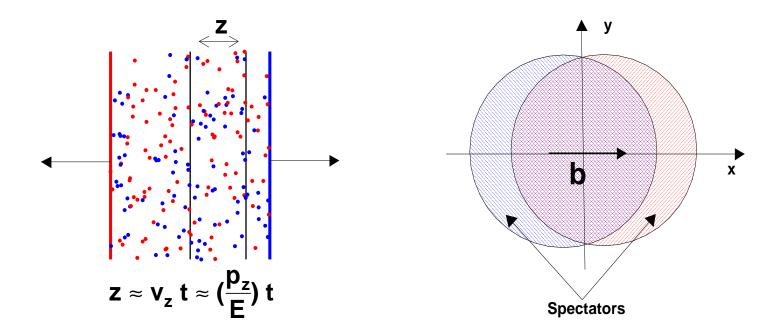
$$d(eV) = -pdV$$

• Compare: d(eV) = Td(sV) - pdV and find

$$d(sV) = 0$$

pdV Work means Entropy is Conserved

The Bjorken expansion

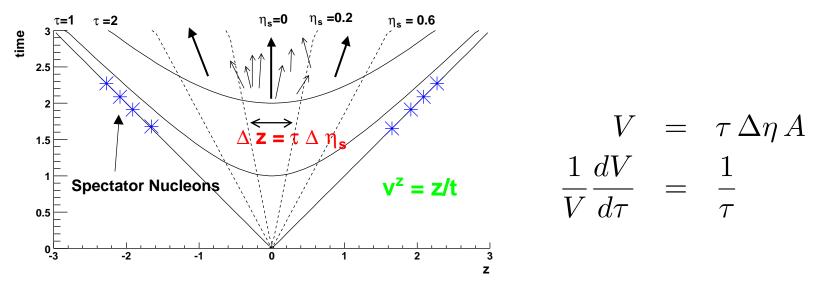


ullet Define the space time rapidity and proper time: $\eta_s=rac{1}{2}\lograc{1+z/t}{1-z/t}$ and $au=\sqrt{t^2-z^2}$

$$\underbrace{\frac{1}{2}\log\frac{1+z/t}{1-z/t}}_{\text{space time rapidity}} \approx \underbrace{\frac{1}{2}\log\frac{1+v_z}{1-v_z}}_{\text{fluid rapidity}} \approx \underbrace{\frac{1}{2}\log\frac{1+p_z/E}{1-p_z/E}}_{\text{particle rapidity}}$$

All rapidities are (almost) the same in high energy collision

1D Bjorken Expansion: (Bjorken)



• The Equation of motion

$$\frac{\partial_t e}{\partial \tau} = -(e+p)\partial_z v^z$$

$$\frac{\partial e}{\partial \tau} = -(e+p)\frac{1}{\tau}$$

$$\frac{\partial e}{\partial \tau} = -p$$

Energy per rapidity decreases due to $p\,dV$ work

1D Expansion: Hydro vs. Free Streaming

$$\underbrace{\frac{de}{d\tau}}_{de} = \underbrace{-\frac{e}{\tau}}_{-e\,dV} + \underbrace{-\frac{p}{\tau}}_{-pdV}$$

ullet For Euler Hydro and Ideal Gas: $p=\frac{1}{3}\epsilon$, $\epsilon=\epsilon_0\left(\frac{T}{T_0}\right)^4$

$$T = T_0 \left(\frac{\tau_0}{\tau}\right)^{1/3}$$

• Entropy Per Rapidity: $s \propto T^3$

$$\tau s = \frac{ds}{dy} = \text{Const}$$

ullet Number per Rapidity: $n \propto T^3$

$$au n = rac{dn}{dy} = extsf{Const}$$

1D Expansion: Free Streaming - Rough Approximation

$$\frac{de}{d\tau} = -\frac{e}{\tau} + \underbrace{-\frac{p}{\tau}}_{\approx 0}$$

ullet How would the "temperature" , $\epsilon=\epsilon_0\left(rac{T}{T_0}
ight)^4$

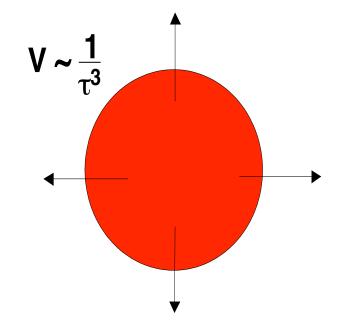
"T" =
$$T_0 \left(\frac{\tau_0}{\tau}\right)^{\frac{1}{3} \div \frac{1}{4}}$$

ullet Entropy Per Rapidity: $s \propto T^3$

$$\tau s = \frac{ds}{dy} \sim \tau^{0 \div \frac{1}{4}}$$

 $rac{ds}{dy}$ is approximately constant even if non-equilibrium effects taken into account

3D Expansion



• Entropy is conserved:

 $(sV) \sim {\rm Const}$

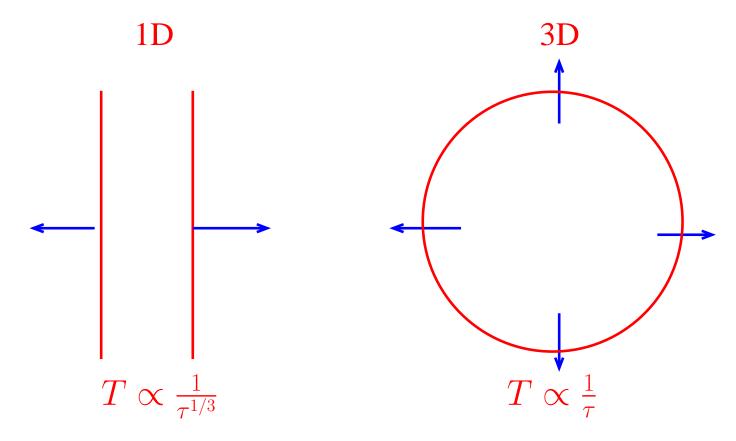
Now

$$s \sim \frac{1}{V} \sim \frac{1}{\tau^3}$$

Then with $s \propto T^3$

$$T \sim \frac{1}{\tau}$$

Summary



Free streaming or Viscous effects do not radically change powers

Hydrodynamics with Viscosity (Gyulassy and Danielewicz)

$$T^{ij} = p\delta^{ij} - \eta\left(\partial^i v^j + \partial^j v^i - \frac{4}{3}\delta^{ij}\partial\cdot v\right) + \text{bulk viscosity}$$

• The Bjorken expansion becomes

$$\underbrace{\frac{de}{dt}}_{de} = -\underbrace{e\frac{1}{\tau}}_{edV} - \underbrace{T_{zz}\frac{1}{\tau}}_{p_{\text{eff}}dV}$$

The pressure get reduced by the expansion

$$T_{zz} = p - \frac{4}{3}\eta \underbrace{\frac{1}{\tau}}_{\partial_z v^z}$$

• The equation of motion is

$$\underbrace{\frac{de}{dt}}_{de} = -\underbrace{(e+p)\frac{1}{\tau}}_{-\text{ideal}} + \underbrace{\frac{4}{3}\frac{\eta}{\tau^2}}_{+\text{viscous}}$$

How valid is Hydrodynamics?

$$\frac{de}{dt} = -(e+p)\frac{1}{\tau} + \frac{4}{3}\frac{\eta}{\tau^2}$$

Comparing the size of the viscous term to the ideal term need.

$$\frac{\eta}{e+p}\frac{1}{\tau} \ll 1$$

ullet Function of time, temperature, etc, (e+p)=sT

$$\frac{\eta}{s}$$
 \times $\frac{1}{\tau T}$ $\ll 1$

fluid parameter experimental parameter $\sim 1/2$

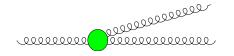
Need η/s smallish to have hydro at RHIC

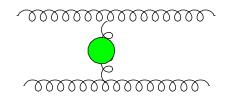
What does $\eta/s < 0.4$ mean theoretically?

Perturbation theory:

(Baym and Pethick. Arnold, Moore, Yaffe)

 Kinetic theory of quarks and gluons + soft gauge fields + collinear emission





$$\frac{\eta}{s} \simeq 0.3 \left(\frac{0.5}{\alpha_s}\right)^2$$

ullet $\mathcal{N}=4$ Super Yang Mills at strong coupling

(Kovtun, Son, Starinets, Policastro)

- No quasi-particles. Conjectured Lower Bound

$$\frac{\eta}{s} = \frac{1}{4\pi}$$

Temperature dependence of shear viscosity

• For a gas of n particles with cross section σ_0

$$\eta \sim \frac{T}{\sigma_0}$$

ullet Scale invariant theory: $\sigma_0 \propto \frac{1}{T^2}$ and $\eta \propto T^3$

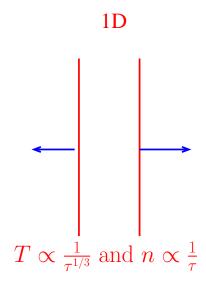
$$\frac{\eta}{e+p} \sim \frac{1}{T} \implies \frac{\eta}{(e+p)\tau} \sim \frac{1}{T\tau}$$

• Constant cross section: σ_0

$$\frac{\eta}{e+p} \sim \frac{T}{\sigma_0} \frac{1}{nT} \implies \frac{\eta}{(e+p)\tau} \sim \frac{1}{n\sigma_0\tau}$$

 $\eta(T)$ determines the quality of hydro vs. time

1D Expansion



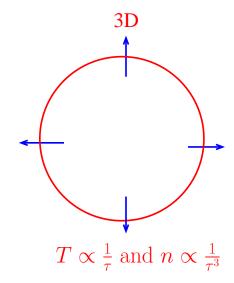
Scale invariant theory: Hydro gets better

$$\frac{\eta}{(e+p)\tau} \sim \frac{1}{\tau T} \sim \frac{1}{\tau^{\frac{2}{3}}}$$

Constant Cross Section: Hydro stays the same

$$\frac{\eta}{(e+p)\tau} \sim \frac{1}{n\sigma_0\tau} \sim \text{Const.}$$

3D Expansion



Scale invariant theory: Hydro stays the same

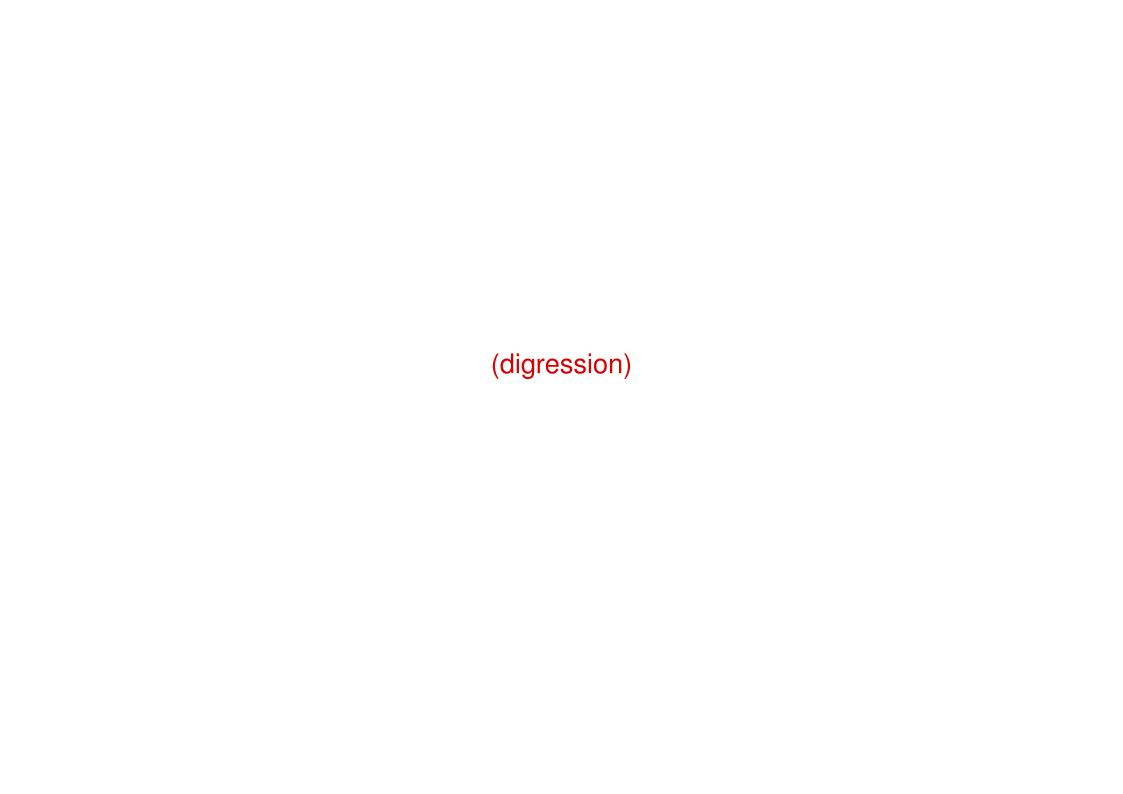
$$\frac{\eta}{(e+p)\tau} \sim \frac{1}{\tau T} \sim \text{Const}$$

Constant Cross Section: Hydro gets worse fast

$$\frac{\eta}{(e+p)\tau} \sim \frac{1}{n\sigma_0\tau} \sim \frac{\tau^2}{\sigma_0}$$

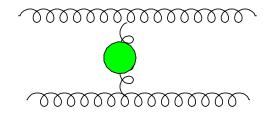
Summary

	σ	1 D Expansion	3 D Expansion
$\eta \propto \textbf{T}^{\textbf{3}}$	$\frac{\alpha_s}{T^2}$	$++ \sim \frac{1}{\tau^{2/3}}$	Const.
$\eta \propto \textbf{T}$	$\sigma_{\mathbf{o}}$	Const.	$- \sim \frac{\tau^2}{\sigma_0}$



What does $\eta/s \simeq 1/4\pi$ mean?

- Many things wrong about AdS/CFT jets. initial reaction etc
- Is something qualitatively wrong/right from AdS/CFT in the soft sector?
- Kinetic picture of the plasma. Occasional scattering of gluons



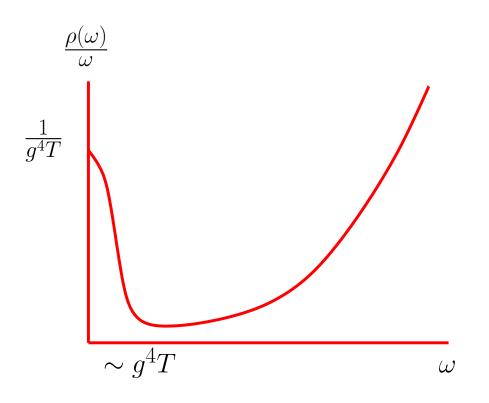
The time between collisions is

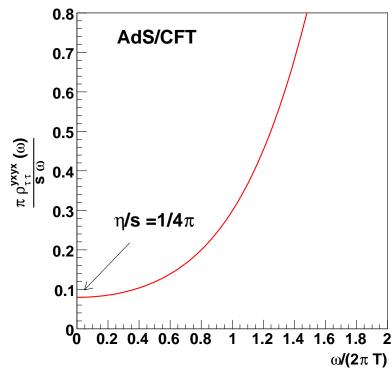
$$\tau_c \sim c \,\ell_{\rm mfp} \sim \frac{1}{g^4 T}$$

In AdS/CFT there are no independent scattering events/particles etc.

Spectral Densities in AdS/CFT and Perturbation Theory

$$\rho(\omega) \equiv \int d^4x \, e^{+i\omega t} \, \langle [T^{xy}(t), T^{xy}(0)] \rangle$$



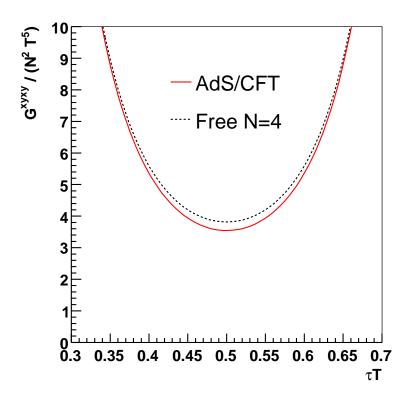


Kinetic Theory

AdS/CFT

Euclidean Correlator: Free and Strongly Interacting

$$\langle T_{xy}(-i\tau)T_{xy}(0)\rangle = \int_0^\infty \rho(\omega) \frac{\cosh\left(\omega(\tau - \frac{1}{2T})\right)}{\sinh\left(\frac{\omega}{2T}\right)}$$



Can lattice distinguish these qualitatively different theories?

Solving Navier Stokes

The Navier Stokes equations

$$\partial_{\mu}T^{\mu\nu}=0$$

$$T^{ij}=\underbrace{p\delta^{ij}}_{\text{equilibrium}}+\underbrace{\pi^{ij}}_{\text{correction}}$$

The "first order" stress tensor instantly assumes a definite form.

$$\pi^{ij} = -\eta \left(\partial^i v^j + \partial^j v^i - \frac{2}{3} \delta^{ij} \partial \cdot v \right)$$

$$O(\epsilon) = O(\epsilon)$$

• Can make "second order" models which relax to the correct form (Israel, Baier et al)

$$-\tau_R \ \partial_t \pi^{ij} + \text{other derivs} = \pi^{ij} + \eta \left(\partial^i v^j + \partial^j v^i - \frac{2}{3} \delta^{ij} \partial \cdot v \right)$$

$$O(\epsilon^2) = O(\epsilon) + O(\epsilon)$$

Can solve these models

Running Viscous Hydro in Three Steps

- 1. Run the evolution and monitor the viscous terms
- 2. When the viscous term is about half of the pressure:
 - T^{ij} is not asymptotic with $\sim \eta(\partial^i v^j + \partial^j v^i \frac{2}{3}\delta^{ij}\partial_l v^l)$

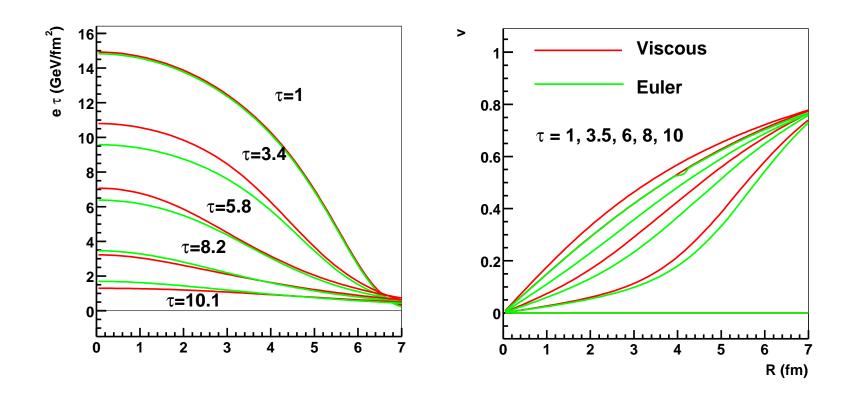
Freezeout is signaled by the equations.

- 3. Compute spectra:
 - Viscous corrections to the spectra grow with p_T

$$f_o \rightarrow f_o + \delta f$$

Maximum p_T is also signaled by the equations.

Bjorken Solution with transverse expansion: Step 1 ($\eta/s=0.2$)



Viscous corrections do NOT integrate to give an O(1) change to the flow.

Freezeout

Freezeout when the expansion rate is too fast

$$\tau_R \partial_\mu u^\mu \sim 1$$

The viscosity is related to the relaxation time

$$\frac{\eta}{e+p} \sim v_{\rm th}^2 \tau_R \qquad p \sim e v_{\rm th}^2$$

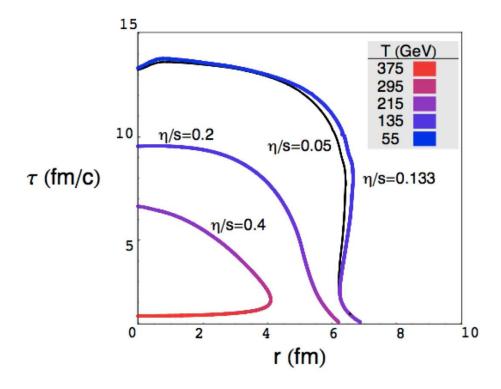
So the freezeout criterion is

$$\frac{\eta}{p} \, \partial_{\mu} u^{\mu} \sim 1$$

Monitor the viscous terms and compute freezeout: Step 2

Contours where viscous terms become O(1)

$$\frac{\eta}{p}\partial_{\mu}u^{\mu} = \frac{1}{2}$$



The space-time volume where hydro applies depends strongly on η/s

Step 3: Viscous corrections to the distribution function $f_o o f_o + \delta f$

- ullet Corrections to thermal distribution function $f_0 \to f_0 + \delta f$
 - Must be proportional to strains
 - Must be a scalar
 - General form in rest frame and ansatz

$$\delta f = F(|\mathbf{p}|)p^i p^j \pi_{ij} \Longrightarrow \delta f \propto f_0 p^i p^j \pi_{ij}$$

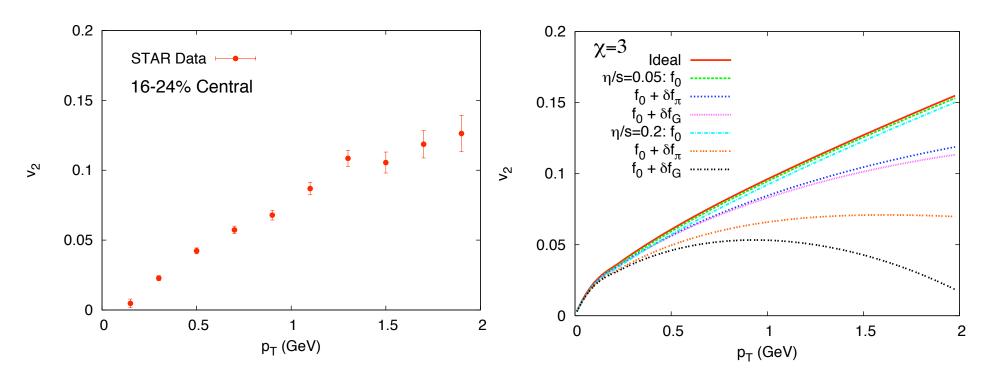
Can fix the constant

$$p\delta^{ij} + \pi^{ij} = \int \frac{d^3p}{(2\pi)^3} \frac{p^i p^j}{E_{\mathbf{p}}} (f_0 + \delta f)$$

find

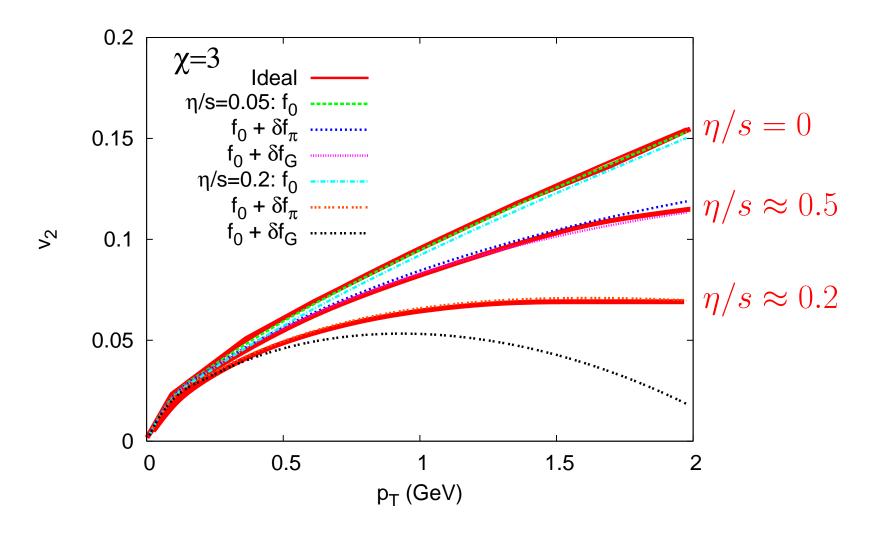
$$\delta f = \frac{1}{2(e+p)T^2} f_o p^i p^j \pi_{ij}$$

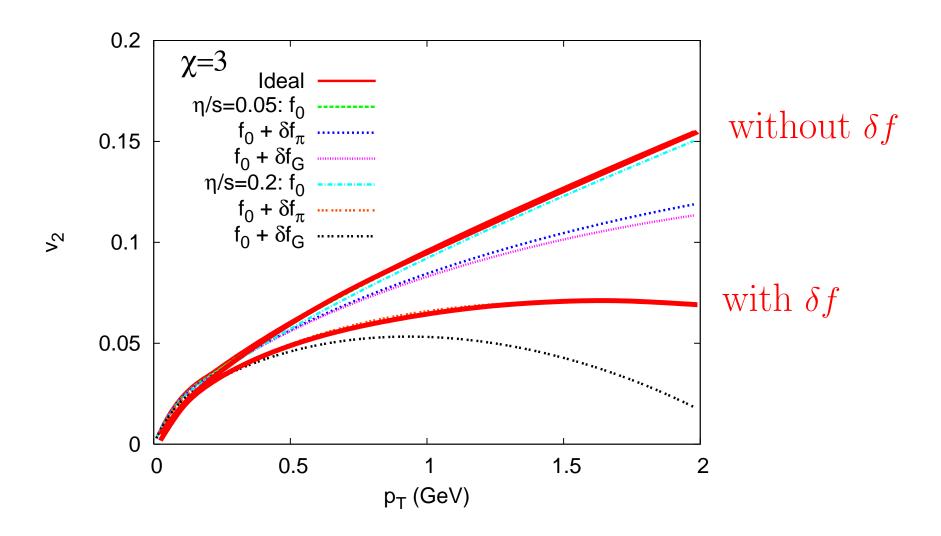
Viscous Hydro Results:

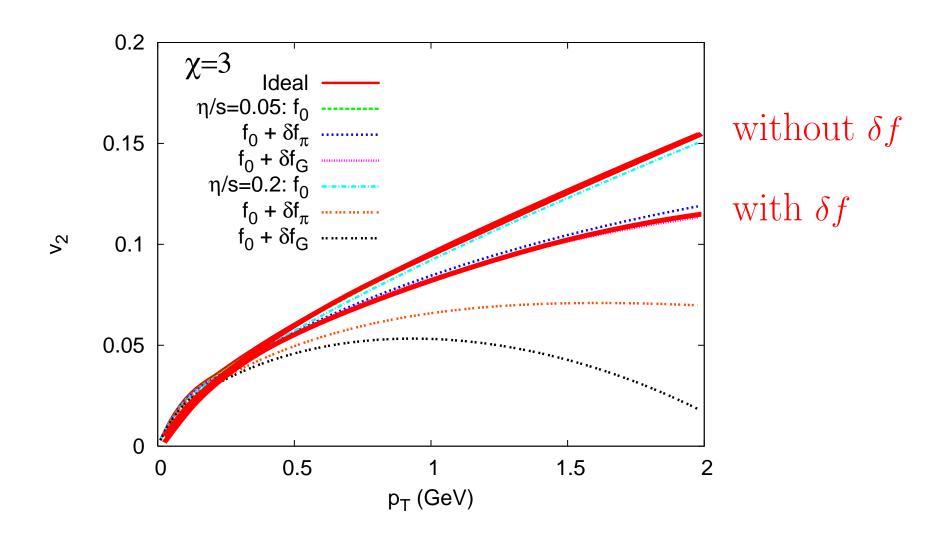


Not compared to data yet. $p/e=\frac{1}{3}$ massless bose gas. $\eta/s=$ Const

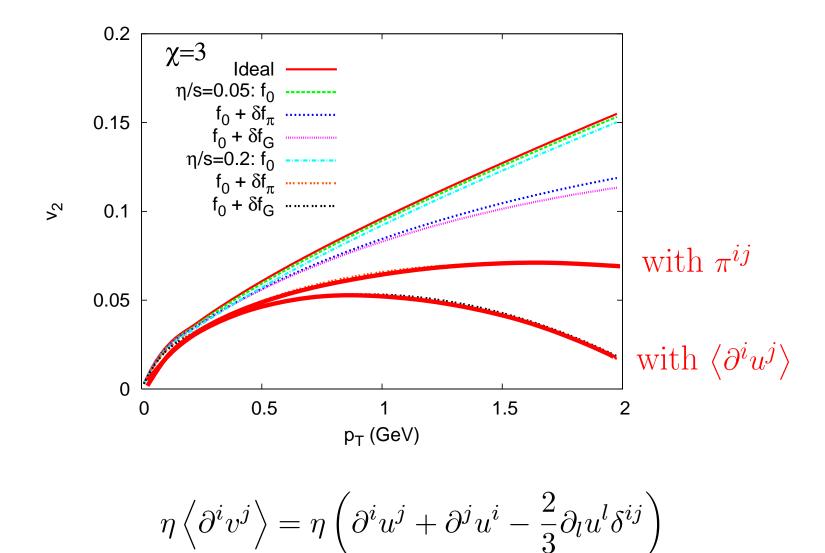
Elliptic Flow as a function of viscosity and p_T , bottom line





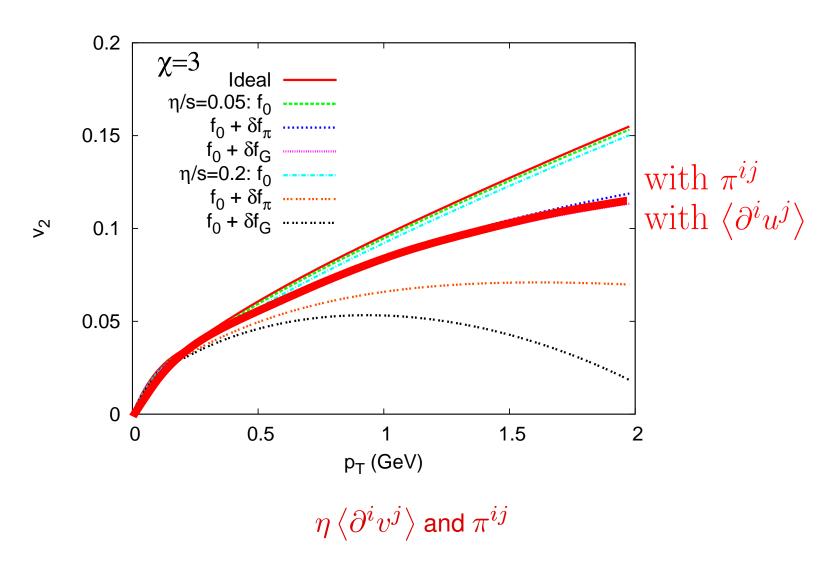


$\eta/s=0.2$ and gradients vs. π^{ij}



Estimates the uncertainty

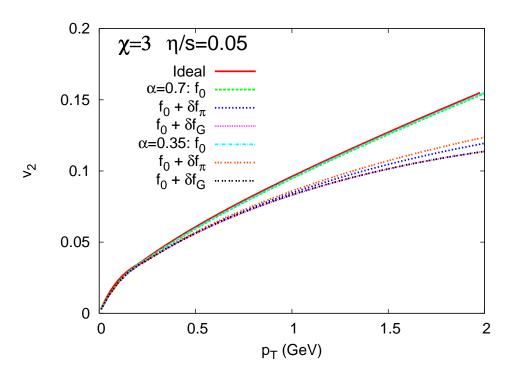
Compare to $\eta/s=0.05$



Independent of second derivative terms (K. Dusling, DT)

$$-\tau_R \ \partial_t \pi^{ij} + \text{other derivs} = \pi^{ij} + \eta \left(\partial^i v^j + \partial^j v^i - \frac{2}{3} \delta^{ij} \partial \cdot v \right)$$

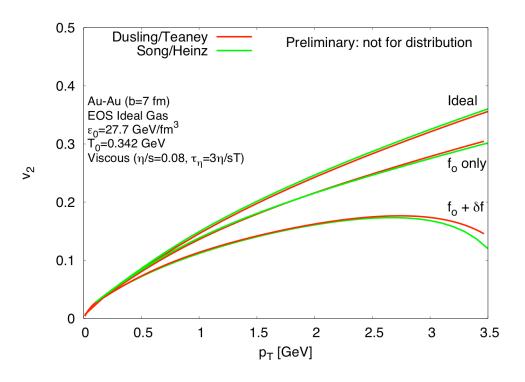
$$O(\epsilon^2) = O(\epsilon) + O(\epsilon)$$



Gradient expansion is working. Temperature is a good concept.

Worse at larger viscosities and larger p_T

Comparison with Huichao Son and U. Heinz



Codes agree. Differ in how second order terms are implemented

Hydro Conclusions:

- Viscosity does not change the ideal hydrodynamic solution much.
- Viscosity does change the freezeout spectrum of final hadrons
- Viscosity signals the boundary of applicability of hydro
 - Need $\eta/s \lesssim 0.3$ to use hydro at all.
 - For $p_T \gtrsim 1.5 \, {\rm GeV}$ the viscous corrections large.

Will even $\eta/s \simeq 1/4\pi$ be enough to explain the v_2 data?